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Noise Charateristis of Feed Forward LoopsBhaswar Ghosh, Rajesh Karmakar and Indrani Bose*3rd November 2004Department of PhysisBose Institute93/1, A. P. C. RoadKolkata - 700 009, India*Author to be ontated for orrespondene; e-mail: indrani�bosemain.boseinst.a.inAbstratA prominent feature of gene transription regulatory networks is the presene inlarge numbers of motifs, i.e, patterns of interonnetion, in the networks. One suhmotif is the feed forward loop (FFL) onsisting of three genes X, Y and Z. Theprotein produt of x of X ontrols the synthesis of protein produt y of Y . Proteins
x and y jointly regulate the synthesis of z proteins from the gene Z. The FFLs,depending on the nature of the regulating interations, an be of eight di�erent typeswhih an again be lassi�ed into two ategories: oherent and inoherent. In thispaper, we study the noise harateristis of FFLs using the Langevin formalism andthe Monte Carlo simulation tehnique based on the Gillespie algorithm. We alulatethe varianes around the mean protein levels in the steady states of the FFLs and�nd that, in the ase of oherent FFLs, the most abundant FFL, namely, the Type-1oherent FFL, is the least noisy. This is however not so in the ase of inoherentFFLs. The results suggest possible relationships between noise, funtionality andabundane.Keywords: feed forward loop, stohasti gene expression, noise, gene transriptionregulatory network, Langevin formalism, Gillespie algorithm.1. IntrodutionBiologial networks represent the omplex webs of biomoleular interations and rea-tions underlying ellular proesses. Well-known examples of biologial networks inludemetaboli reation, protein-protein interation and gene transription regulatory networks(GTRNs) [1, 2℄. The availability of large sale experimental data and powerful omputa-tional tools provide information on the strutural and funtional features of the omplex1



Figure 1: Eight types of FFLs: (a) Type-1, (b) Type-2, () Type-3, (d) Type-4 oherentFFLs, (e) Type-1, (f) Type-2, (g) Type-3, (h)Type-4 inoherent FFLs. The arrow signdenotes ativation and the ⊥ sign repression.networks. In the ase of a GTRN, the nodes of the network represent genes and two nodesare onneted by a direted link if the protein produt of one gene regulates the synthesisof proteins from the other gene. Existing databases on simple organisms like E. oli andS. erevisiae show that the GTRNs of these organisms have ommon strutural motifs likebi-fan, single input module (SIM) and feed forward loop (FFL) [3, 4, 5℄. Suh motifs aremore abundant in the naturally ourring networks than in their randomized ounterparts,highlighting the essential roles of motifs in network funtion.The regulatory and other biohemial proesses assoiated with a GTRN are proba-bilisti in nature giving rise to �utuations in the levels of proteins synthesized by di�erentgenes. The magnitude of noise annot be negleted when the number of biomoleules par-tiipating in the network proesses is small. Reently, several theoretial [6, 7, 8, 9, 10℄as well as experimental [11, 12, 13℄ studies have been arried out on the origins and on-sequenes of stohastiity and the dependene of noise on some important parameters ofgene expression (GE) like the transription and translation rates. The e�et of stohastiitymay be both advantageous and disadvantageous. Stohastiity an give rise to phenotypivariations in an idential population of ells kept in the same environment. It thus plays apositive role in situations where phenotypi diversity is bene�ial. In most ases, however,stohastiity ats to diminish �delity in ellular proesses. Noisy regulatory signals, for ex-ample, may not ahieve the desired outome introduing unertainty in ellular behaviour.Fraser et al. [14℄ have reently addressed the important issue of the relation of noiseto the �tness of an organism. They estimate the noise in protein prodution for almostall the genes in S. erevisiae and show that the amount of noise assoiated with protein2



levels in the steady state has lower magnitude in the ases of essential genes and genesenoding subunits of multi-protein omplexes. Flutuations in the protein levels of thesefuntionally important lasses of genes are partiularly detrimental to organismal �tnessbeause of redued funtionality. The lower amounts of noise assoiated with the genessupport the hypothesis that noise is an evolvable trait ated on by natural seletion. In thispaper, we onsider a simple stohasti model of GE to determine the noise harateristisof a partiular type of motif appearing in GTRNs, namely, the FFL [3, 4, 5℄. A FFL is athree-node motif desribing three genes X, Y and Z (�gure 1). The protein x produedfrom gene X regulates protein synthesis from gene Y . Proteins x and y also jointly regulatethe expression of gene Z. Induer moleules Sx and Sy are in general required to ativate orinhibit the funtion of protein moleules x and y. There are three transriptional regulatoryinterations in a FFL, eah of whih an have either positive (ativation) or negative(repression) sign. The motif with three links an be in eight possible on�gurations whihfall into two ategories: oherent and inoherent (�gure 1). In a oherent FFL, the signof the diret regulation path from X to Z is the same as the overall sign of the indiretregulation path via Y . There are four suh on�gurations. In the other four on�gurations,termed inoherent FFLs, the signs of the diret and indiret regulation paths are opposite.The two protein inputs x and y regulate the target gene Z through either an AND-gate oran OR-gate. In the �rst ase, both x and y proteins are needed to regulate gene Z and inthe seond ase, either x or y protein is su�ient for the regulation of Z. The funtionalityof the di�erent types of FFLs has been determined using a simple mathematial analysisbased on the deterministi rate equation approah [4℄. The oherent FFL is found toserve as a sign-sensitive delay element. Consider the Type-1 oherent FFL with AND-gateregulation and a step-like pulse of x proteins as the input stimulus (signal). Expressionof gene Z an only begin when the level of y proteins is su�ient to ross the ativationthreshold for Z. The response time is a measure of the speed of response and is given bythe time taken for the z proteins to reah an amount whih is half the steady state level.Sign-sensitive delay implies that the response time to step-like stimuli is asymmetri, i.e,the response time is delayed in one diretion (pulse OFF to ON) and rapid in the otherdiretion (ON to OFF). As a result, if the ativation of the X gene is transient, the Z geneannot be signi�antly ativated, i.e, the input signal is not transdued through the FFL.The z proteins are synthesized only when the X gene is ativated for a su�iently longtime interval. The Z gene swithes o� rapidly one the X gene is deativated. In otherwords, the oherent FFL funtions as a persistene detetor, responding only to a persistentstimulus and �ltering out �utuations in the input signal. The role of the oherent FFL assign-sensitive delay has been veri�ed experimentally [15℄. The inoherent FFLs funtionas sign-sensitive aelerators speeding up the response time in one diretion (OFF to ONin the stimulus step) but not in the other diretion (ON to OFF). Some inoherent FFLsat also as pulse generators. Amongst the oherent FFLs, the Type-1 FFL appears themaximum number of times in the GTRNs of E. oli and S. erevisiae. Similarly, in thease of inoherent FFLs, the Type-1 FFL is the most abundant. We alulate the noiseharateristis of the oherent and inoherent FFLs using the Langevin formalism [16℄and the Monte Carlo simulation tehnique based on the Gillespie algorithm (GA) [17, 18℄.3



We show that the most abundant oherent FFL, namely, the Type-1 FFL, is the leastnoisy. This is, however, not true in the ase of the inoherent FFLs. The lower numberof FFLs has been asribed to their redued funtionality [4℄. Noise is disadvantageous ifit a�ets operational reliability. Our results on noise harateristis of FFLs suggest thatnoisy motifs are likely to be seleted against during evolution if noise is detrimental to thefuntion of the motifs.2. Stohasti Model of GEThe simple stohasti model of GE has been studied earlier as a Markovian model for thegene indution proess [19℄ and also to explore the possible origins of the geneti disorder,haploinsu�ieny [10, 20℄. In the minimal model, a gene an be in two possible states:inative (G) and ative (G∗). Due to stohastiity, the gene makes random transitionsbetween the inative and ative states with ka and kd being the ativation and deativationrate onstants. In the ative state, protein prodution ours with the rate onstant βp.Protein deay ours with the rate onstant γp. The protein deay rate has two omponents,one, the degradation rate and the other, the dilution rate of proteins due to ell growthand division. The reation sheme RS-1 is shown in equation (1),
G

ka

⇋

kd

G⋆
βp

−→ p
γp

−→ Φ (1)Let P (n1, n2, t) be the probability that at time t, n1 genes are in the ative state G∗ andthe number of protein moleules is n2. The rate of hange of the probability with respetto time is given by the Master Equation
∂P (n1,n2,t)

∂t
= ka[(ntot − n1 + 1)P (n1 − 1, n2, t) − (ntot − n1)P (n1, n2, t)]

+kd[(n1 + 1)P (n1 + 1, n2, t) − n1P (n1, n2, t)]
+βp[n1P (n1, n2 − 1, t) − n1P (n1, n2, t)]

+γp[(n2 + 1)P (n1, n2 + 1, t) − n2P (n1, n2, t)]

(2)where ntot is the total number of genes.For eah rate onstant, the gain term adds to the probability and the loss term subtratsfrom the same. The simpliity of the stohasti model enables one to alulate the meanprotein level < n2 > and its variane < δn2
2 >=< n2

2 > − < n2 >2 in the steady stateusing the standard generating funtion approah. The results are:
< n2 >=

βp

γp

ntot ka

ka + kd
(3)

< δn2
2 >=< n2 > [1 +

βp kd

(ka + kd)(ka + kd + γp)
] (4)4



Also, the mean number of genes in the ative state is given by
< n1 >=

ntot ka

ka + kd

(5)The minimal model (equation (1)) desribes onstitutive GE. We now assume that thetransition from the state G to the state G∗ is brought about by ativating regulatorymoleules S. The reation sheme RS-2 in the presene of suh moleules is given by
G + S

k1

⇋

k2

G−S
ka

⇋

kd

G⋆
βp

−→ p
γp

−→ Φ (6)where G−S represents the bound omplex of G and S from whih transition to the ativestate G∗ ours. The total number of genes ntot is given by
ntot = g + gs + g∗ (7)where g, gs and g∗ are the number of genes in the states G, G−S and G∗ respetively. Inthe steady state, dg

dt
= 0 and dg∗

dt
= 0. From the �rst ondition, one obtains

g s

K1
= gs (8)where K1 = k2

k1

is the equilibrium dissoiation onstant and s is the number of regulatorymoleules. From the seond ondition, the expression for g∗ in the steady state is given by
g∗ =

ntotka
s/K1

1+s/K1

ka
s/K1

1+s/K1

+ kd

(9)Expressions (5) and (9) for the number of genes in the ative state G∗ are equivalent onde�ning e�etive ativation and deativation rate onstants
k

′

a = ka
s/K1

1 + s/K1

k
′

d = kd (10)The equivalene relations are useful as one an map the reation sheme RS-2 onto thesimpler sheme RS-1 while alulating mean protein levels and the assoiated varianes.Regulatory moleules, in general, oligomerise to form an ative omplex Sn where n is thenumber of regulatory moleules ontained in the omplex. In this ase, the e�etive rateonstants k
′

a and k
′

d are given by
k

′

a = ka
(s/K)n

1 + (s/K)n
, k

′

d = kd (11)where Kn = K1Kc , Kc being the equilibrium dissoiation onstant for oligomerisation,i. e, 5



n S
Kc

⇋ Sn (12)When the regulatory moleules S at as repressors, the e�etive rate onstants are givenby
k

′

a = ka
1

1 + (s/K)n
, k

′

d = kd (13)In this ase, repressor moleules on binding to genes prevent their ativation to the state
G∗.We now apply the stohasti model of GE to determine the mean levels of proteins x,
y and z and the varianes thereof in the steady state of a FFL. The varianes alulatedare a measure of the intrinsi noise assoiated with GE as �utuations in the number ofregulatory moleules are ignored. Let βi and γi (i = x, y, z) be the rate onstants forthe synthesis and deay respetively of protein i. For proteins x, the mean protein level
xav and its variane < δx2 > in the steady state are obtained from equations (3) and (4)[10, 19℄ as (with ntot = 1)

xav =< x >=
βx

γx

ka

ka + kd
(14)

< δx2 >=< x > [1 +
βx kd

(ka + kd)(ka + kd + γx)
] (15)where ka and kd are ativation and deativation rate onstants of gene X. Protein moleules

x regulate the ativation of gene Y aording to the reation sheme RS-2. Mapping ontothe simpler reation sheme RS-1, one obtains in the steady state
yav =< y >=

βy

γy

k
′

a

k′

a + k
′

d

(16)
< δy2 >=< y > [1 +

βy k
′

d

(k′

a + k
′

d)(k
′

a + k
′

d + γy)
] (17)The e�etive rate onstants k

′

a and k
′

d have the forms given in equations (11) or (13)depending on whether the regulatory interation is ativating or repressing in nature. Inthe ase of ativation, assuming n to be 2,
k

′

a = kay
(x/Kxy)

2

1 + (x/Kxy)2
, k

′

d = kdy (18)In (18), kay represents the limiting value of k
′

a obtained when x
Kxy

≫ 1. In the ase ofrepression,
k

′

a = kay
1

1 + (x/Kxy)2
, k

′

d = kdy (19)6



Both the x and y proteins regulate the ativation of the Z gene. The mapping of theassoiated reation sheme onto the simpler reation sheme RS-1 is still possible. Thee�etive rate onstants k
′′

a and k
′′

d have spei� forms depending on the nature of theregulating interation (ativating/ repressing) and the type of logi gate (AND/ OR) inoperation. The mean protein level in the steady state and its variane are
zav =< z >=

βz

γz

k
′′

a

k′′

a + k
′′

d

(20)
< δz2 >=< z > [1 +

βz k
′′

d

(k′′

a + k
′′

d )(k′′

a + k
′′

d + γz)
] (21)The ativation and deativation rate onstants k

′′

a and k
′′

d are
k

′′

a = kaz G(x, y, Txz , Tyz), k
′′

d = kdz (22)where kaz is the limiting value of k
′′

a . For the AND-gate,
G(x, y, Txz , Tyz) = Txz Tyz (23)For the OR-gate,

G(x, y, Txz , Tyz) =
(1 + (x/Kxz)

2) Txz + (1 + (y/Kyz)
2) Tyz

1 + (x/Kxz)2 + (y/Kyz)2
(24)This expression has been derived assuming that the regulatory moleules x and y ompeteto bind at the operator region of the gene Z, as in Ref. [4℄.For ativating regulatory interations,

Txz =
(x/Kxz)

2

1 + (x/Kxz)2
, Tyz =

(y/Kyz)
2

1 + (y/Kyz)2
(25)For repressing regulatory interations,

Txz =
1

1 + (x/Kxz)2
, Tyz =

1

1 + (y/Kyz)2
(26)The parameters Kxy, Kyz and Kxz appearing in (17), (25) and (26) are analogous to theparameter K in (11). In the steady state of the FFL, all three proteins x, y, z are in theirsteady state levels and the e�etive rate onstants k

′

a, k
′′

a are alulated with the steadystate values x = xav and y = yav.The FFL may be onsidered to be a two-step signaling asade. The x and z proteinsonstitute respetively the input and output signals of the asade. With stohastiitytaken into aount, it is desirable that asades are able to transmit signals in a reliablemanner. When �utuations are onsiderable, there is a danger of the noise building up insuessive steps of the asade orrupting the �nal output signal. Thattai and Oudenaarden[16℄ have studied the noise harateristis of signaling asades and have shown that underertain onditions the �utuations in the output signal are bounded. Also, noise redutionis possible, i.e, the output signal is less noisy than the input signal.7



3. Noise Charateristis of FFLThe variane around the mean protein level has two omponents: intrinsi and extrinsi.In the last setion, the variane due to only the intrinsi part has been alulated. In thissetion, the �utuations in the number of regulatory moleules, onstituting extrinsi noise,are taken into aount. The total varianes in the steady state of the FFL are denotedas < δx2 >tot (equals < δx2 > given in (15)), < δy2 >tot and < δz2 >tot. The varianesan be alulated using the method followed in [16℄. We use Langevin equations to takestohastiity into aount. The equation desribing the prodution of protein x is given by
ẋ = βx

ka

ka + kd

− γx x + η1(t) (27)where ẋ represents a time derivative. Stohastiity is assoiated with the time-dependentnoise term η1(t) in equation (27). The random variable η1(t) obeys white-noise statistis,i.e,
< η1(t) >= 0, < η1(t) η1(t + τ) >= q1 δ(τ) (28)where δ(τ) is the Dira delta funtion and < ... > denotes an ensemble average. The statedependenes of η1(x, t) and q(x) are ignored sine we are interested in the steady statenoise harateristis. In the absene of the noise term in equation (27), the mean proteinlevel in the steady state (ẋ(t) = 0), as in equation (14), is reovered. We linearize equation(27) for �utuations, assumed to be small, about the steady state to obtain

δẋ(t) + γx δx = η1(t) (29)Fourier transform of equation (29) yields
(i ω + γx) δx(ω) = η1(ω) (30)Next, taking ensemble average and applying ondition (28), we get
< |δx(ω)|2 >=

q1

ω2 + γ2
x

(31)The steady state variane < δx2 >tot is given by an inverse Fourier transform at τ = 0, i.e,
< δx2 >tot=

q1

2 γx
(32)Sine < δx2 >tot=< δx2 > (equation (15)), q1 is known expliitly from equation (32). Forprotein y, the Langevin equation is given by

ẏ + γy y = βy fxy(x) + η2(t) (33)with
< η2(t) η2(t + τ) >= q2 δ(τ) (34)8



In equation (33), the rate of reation of y proteins in terms of the x proteins is given bythe �rst term on the r.h.s. The funtion fxy(x) is designated as the transfer funtion andis given by
fxy(x) =

k
′

a

k′

a + k
′

d

(35)where k
′

a and k
′

d are as de�ned in equations (18) and (19). Again, the mean protein levelin the steady state, yav (equation (16)) an be reovered from equation (33) by ignoringthe noise term and putting ẏ = 0. Going through the same steps as before, the variane
< δy2 >tot is obtained as

< δy2 >tot=
q2

2 γy

+
β2

y c2
x q1

2 γx γy (γx + γy)
(36)The �rst term in equation (36) is the intrinsi noise term given by < δy2 > (equation(17)). The seond term, desribing extrinsi noise, arises due to the noise propagated fromthe input, i.e, due to the �utuations in the number of x regulatory proteins. In the sameequation, cx is the derivative of the transfer funtion fxy(x), w.r.t x, alulated at thesteady state value of x, i.e

cx =
∂fxy(x)

∂x

∣

∣

∣

∣ x = xav
(37)For the z proteins, the Langevin equation is

ż + γz z = βz gxy(x, y) + η3(t) (38)with
< η3(t) η3(t + τ) >= q3 δ(τ) (39)The transfer funtion gxy(x, y) is given by

gxy(x, y) =
k

′′

a

k′′

a + k
′′

d

(40)where k
′′

a and k
′′

d have been de�ned in equations (22)-(26). The variane < δz2 >tot is givenby
< δz2 >tot=

q3

2 γz

+
q2 β2

z d2
y

2 γy γz (γy+γz)
+ q1 β2

z
d2

x

2 γx γz (γx+γz)
+

q1 β2
y β2

z c2x d2
y (γx+γy+γz)

2 γx γy γz (γx+γy)(γy+γz)(γx+γz)

+ q1 βy β2
z

γy cx dx dy (γx+γy+γz)
γx γy γz (γx+γy)(γy+γz)(γx+γz)

(41)where 9



dx =
∂gxy(x, y)

∂x

∣

∣

∣

∣ x = xav, y = yav
, dy =

∂gxy(x, y)

∂y

∣

∣

∣

∣ x = xav, y = yav
(42)In equation (39), the �rst term q3

2 γz

is the intrinsi noise term given by < δz2 > (equation(21)). The other terms represent noise propagated from the earlier stages, i.e, our dueto �utuations in the number of x and y regulatory moleules. These terms desribe theextrinsi noise.4. Results and DisussionWe now alulate the varianes < δx2 >tot, < δy2 >tot and < δz2 >tot for the di�erentFFLs. Our goal is to ompare the varianes for the same as well as di�erent FFLs. Forsimpliity we assume that all γi's (i =x, y, z)=1 and Kxy = Kyz = Kxz = 1. The meanlevels of proteins x, y and z in the steady state are kept the same in all the ases so that ameaningful omparison between the varianes an be made. Figures 2 and 3 show the plotsof < δx2 >tot (line with long dashes), < δy2 >tot (line with short dashes) and < δz2 >tot(solid line) versus βy for the oherent and inoherent FFLs respetively. The regulation ofthe Z gene by the x and y proteins is ahieved via the AND gate. The plots have beenobtained keeping the mean protein levels xav, yav and zav �xed at m = 5.0. For this we put
βx = βz = 10, ka = kd = 20, k

′′

a = k
′′

d , kaz = 20, k
′

a =
m k

′

d

βy − m
, k

′

d = 20, (43)For the oherent Type-1 FFL with AND-gate regulation, the values of kay and k
′′

a are �xedfrom the relations
k

′

a = kay
m2

1 + m2
(44)and

k
′′

a = kaz
m4

(1 + m2)2
(45)Equivalent relations hold true for the other types of FFLs. An examination of �gure 2shows that the Type-1 oherent FFL is the least noisy amongst all the oherent FFLs.The number of times the Type-1,Type-2, Type-3 and Type-4 oherent FFLs appear inthe GTRNs of E. oli (S. erevisiae) are 28, 2, 4, 1 (26, 5, 0, 0) [4℄. The most abundantoherent FFL, namely the Type-1 FFL, is the least noisy. This is not true for the inoherentFFLs. The number of times the Type-1, Type-2, Type-3, Type-4 inoherent FFLs appearin the GTRNs of E. oli (S. erevisiae) are 5, 0, 1, 1 (21, 3, 1, 0). The most abundantinoherent FFL, namely, the Type-1 FFL, is more noisy than, say, the Type-4 inoherentFFL, whih is pratially absent in the GTRNs.The reasons as to why some FFLs our more often than the others in GTRNs, are notwell understood. Generally speaking, redued funtionality of a motif may be a possible10
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(d)Figure 2: Varianes < δx2 >tot (line with long dashes), < δy2 >tot (line with short dashes),
< δz2 >tot (solid line) versus βy for (a) Type-1, (b) Type-2, () Type-3 and (d) Type-4oherent FFLs ontrolled by AND-gate. The mean protein level is �xed at m=5. Theother parameter values are mentioned in the textreason for its lower abundane, i.e, being seleted against during evolution. As suggestedby Mangan and Alon [4℄, for AND-gate FFLs, Types-3 and 4 have redued funtionalityompared to Types- 1 and 2, as the former respond to at most one input stimulus (Sx)whereas the latter respond to both the input stimuli Sx and Sy. Also, Type-1 oherentFFL gains advantage from inreased ooperativity leading to a sharper response in thepresene of stimuli. For low x onentrations, the e�etive Hill oe�ient (a measure ofooperativity) is 6 (for n = 2 in equation (12)) whereas the same, for the other FFLs,is 2. We now disuss the relationship between noise, funtion and abundane. For thesake of larity, we fous attention on the Type-1 and Type-4 oherent FFLs. Figure 4shows plots for the total varianes around the mean protein level m = 5 when the inputnoise < δx2 >tot is higher than that in the ases of �gures 2 and 3. The parameter valueshanged from equation (43) are ka = kd = 5, k

′

d = 30 and kaz = 30. In the ase of theType-1 oherent FFL, one �nds the existene of a parameter region in whih the varianedereases in the suessive stages of the FFL so that the output noise is less than the inputnoise. Suh a parameter region is absent in the ase of the Type-4 oherent FFL. Another11



notable feature of the plots in �gures 2 and 4 is that < δy2 >tot and < δz2 >tot in thease of the Type-1 FFL have almost linear dependenes on βy whereas the same quantitiesare more nonlinear in the ase of the Type-4 FFL. For the Type-1 FFL, the dominantontribution to < δz2 >tot is from the internal noise assoiated with the expression of the
Z gene. Flutuations in the x and y protein levels have little e�et on the total noise. Inthe ase of the Type-4 FFL, the extrinsi ontribution to noise is greater than that in thease of the Type-1 FFL. In short, �gures 2 and 4 show that the Type-1 FFL ats as abetter �lter of noise. As mentioned in the Introdution, one possible funtion of oherentFFLs is as a persistent detetor or equivalently as a �lter whih attenuates the input noise.The Type-1 oherent FFL being less noisy than the Type-4 oherent FFL, funtions betteras a noise �lter. The redued funtionality of the Type-4 oherent FFL explains its lowerabundane from an evolutionary point of view. Similar reasoning holds true for Type-2and Type-3 oherent FFLs. Thus for oherent FFLs, noise is disadvantageous as it erodesthe funtion of a FFL as a persistent detetor. For inoherent FFLs, funtioning as sign-sensitive aelerators, noise appears to have no diret relationship with abundane, i.e,noise is not detrimental to the funtioning of the FFLs.Our analysis of the noise harateristis of FFLs is based on the Langevin formalismwhih is approximate in nature. To establish the validity of the results, we have alulatedthe varianes using Monte Carlo simulation based on the GA [17, 18℄. The GA provides anumerial solution of the Master Equation leading to an aurate desription of the timeourse of evolution of a stohasti system. A brief desription of the GA is as follows. Con-sider N hemial speies partiipating in M hemial reations. Let X(i), i = 1, 2, 3, ....., Ndenotes the number of moleules of the ith hemial speies. Given the values of X(i),
i = 1, 2, 3, ...N at time t, the GA is designed to answer two questions: (1) when will thenext reation our? and (2) what type of reation will it be? Let the next reation ourat time t + τ . Knowing the type of reation, one an adjust the numbers of partiipatingmoleules in aordane with the spei� reation sheme. Thus, with repeated applia-tions of the GA, one an keep trak of how the numbers, X(i)'s, hange as a funtion oftime due to the ourrene of M di�erent types of hemial reations. Eah reation µ(µ = 1, 2, 3, ...., M) has a stohasti rate onstants Cµ assoiated with it. The rate onstanthas the interpretation that Cµdt is the probability that a partiular ombination of reatingmoleules partiipates in the µth reation in the in�nitesimal time interval (t, t+dt). If hµis the number of distint moleular ombinations for the µth reation, then aµdt = hµCµdtis the probability that the µth reation ours in the in�nitesimal time interval (t, t+dt).The implementation of the GA algorithm is desribed in detail in Refs. [17, 18℄. We usethe algorithm to determine the evolution of the number of z proteins of a FFL as a funtionof time. Figures 5(a) and 6(a) show the results for the oherent Type-1 and Type-4 FFLrespetively. The solid line, in eah ase, represents the mean trajetory obtained froma solution of the deterministi equations. The reations onsidered are those assoiatedwith a FFL. Expression of eah gene X , Y and Z is aording to the reation shemeRS-2 (equation (6)). For the X gene, there is no regulatory moleule S. The x proteinsdimerize (equation (12) with n = 2) and the dimers regulate expression of the Y gene.The y proteins also dimerize to regulate expression of the gene Z. Considering AND-gate12
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(d)Figure 3: Varianes < δx2 >tot (line with long dashes), < δy2 >tot (line with short dashes),
< δz2 >tot (solid line) versus βy for (a) Type-1, (b) Type-2, () Type-3 and (d) Type-4inoherent FFLs ontrolled by AND-gate. The mean protein level is �xed at m=5. Theother parameter values are mentioned in the text.regulation of the Z gene expression, both the x and y protein dimers bind simultaneouslyat the operator region for ativation of the gene. Other possibilities like the operator regionunoupied or oupied by a single dimer are onsidered but the gene remains in the ina-tive state in these ases. The stohasti rate onstants Cµ's are equal to the rate onstants
kµ's sine in the deterministi approah the numbers and not the onentrations of thedi�erent moleules are onsidered. Figure 5(b) and 6(b) show the histograms desribingthe distribution of protein levels, N(z) versus z, for the oherent Type-1 and Type-4 FFLsrespetively. The histograms have been obtained by aumulating data over 5000 trialruns. The distribution is broader in the ase of the Type-4 oherent FFL indiating thatit is more noisy than the Type-1 FFL. The varianes for Type-1 and Type-4 distributionsare 110.612 and 329.990 respetively. The simulation results support the results obtainedby using the Langevin formalism that the Type-4 oherent FFL is more noisy than theType-1 oherent FFL.
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Figure 4: Varianes < δx2 >tot (line with long dashes), < δy2 >tot (line with short dashes),
< δz2 >tot (solid line) versus βy for (a) Type-1 oherent FFL and (b) Type-4 oherentFFL ontrolled by AND-gate. The mean protein level is �xed at m=5. The input noise isgreater than that in the ase of �gure 2.5. Conlusion and OutlookIn this paper, we have studied the noise harateristis of oherent and inoherent FFLsusing the Langevin formalism as well as a numerial simulation tehnique based on theGillespie algorithm. Noise is undesirable if it a�ets operational reliability. CoherentFFLs funtion as noise �lters and the performane of the Type-1 FFL is found to be thebest sine the propagation of noise assoiated with the input signal is the least in thisase. The oherent Type-1 FFL is the most abundant of FFL motifs appearing in theGTRNs of simple organisms. The funtional superiority of the Type-1 FFL, amongst thefour oherent FFLs, is the main reason why the partiular motif is favoured by naturalseletion. Mangan and Alon [4℄ have speulated that inreased e�etive ooperativityof the Type-1 FFL might be responsible for its evolutionary advantage. Thattai andvan Oudenaarden [16℄ have shown that inreased ooperativity leads to noise redution.This possibly explains why the Type-1 oherent FFL has less output noise than the otheroherent FFLs. For the inoherent FFLs, no lear onlusion regarding the role of noisean be arrived at as onrete results are laking. Noise may be advantageous to funtionin ertain ases. Stohasti resonane is a phenomena in whih noise in threshold systemsfailitates detetion of subthreshold signals [21℄. In stohasti fousing, �utuations (noise)sharpen the response to an input signal, i.e, make a graded response mehanism work morelike a threshold one [22℄. Further studies are needed to asertain whether noise aids thefuntion of inoherent FFLs in some manner similar to stohasti fousing. If this is true,then the most abundant motif need not be the least noisy. Regulatory asades of whihthe FFL is a speial ase an exhibit interesting kineti phenomena whih inlude eventransient ones like pulse generation [23, 24℄. It will be of onsiderable interest to determinethe e�et of noise on suh phenomena.Fraser et al. [14℄ have addressed the question of whether noise assoiated with GE14



Figure 5: (a) The number of proteins z(t) as a funtion of time t for the Type-1 oherentFFL. The time trajetory is obtained using the GA. The solid line determines the meanurve. (b) Histogram desribing the distribution of protein levels (N(z) versus z) in thesteady state.

Figure 6: (a) The number of proteins z(t) as a funtion of time t for the Type-4 oherentFFL. The time trajetory is obtained using the GA. The solid line determines the meanurve. (b) Histogram desribing the distribution of protein levels (N(z) versus z) in thesteady state.
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has any signi�ant e�et on the �tness of an organism. They have estimated the noise inprotein prodution of almost all the S. erevisiae genes using an experimentally veri�edmodel of stohasti GE. Their major �nding is that noise is minimized in the ases of genesfor whih it is likely to be most harmful. These genes inlude essential genes, i.e, geneswhose deletion is lethal to the organism and genes whih synthesize the subunits of multi-protein omplexes. Both types of genes are expeted to be sensitive to noise. For essentialgenes, �utuations in protein levels may have onsiderable e�et on funtional viabilityif the levels fall below the threshold required for normal ellular ativity. Similarly, inthe ase of a multy-protein omplex, �utuations in the amounts of protein subunits mayhinder the appropriate assembly of the entire omplex. The observations of Fraser et al.are in agreement with our results on oherent FFLs. Sine noise has a deleterious e�eton the funtion of a oherent FFL as a persistene detetor, it is minimized in the ase ofthe best performing Type-1 FFL.AknowledgementsR.K. is supported by the Counil of Sienti� and Industrial Researh, India under SantionNo. 9/15 (239)/2002 - EMR-1B.G. is supported by the Counil of Sienti� and Industrial Researh, India under SantionNo. 9/15 (282)/2003 - EMR-1Referenes[1℄ Alm E and Arkin A P 2003 Curr. Opin. Strut. Biol. 13 193-202[2℄ Barabási A L and Oltvai Z N 2004 Nat. Rev. Genet. 5 101-03[3℄ Shen-Orr S, Milo R, Mangan S and Alon U 2002 Nature Genet. 31 64-68[4℄ Mangan S and Alon U 2003 Pro. Natl. Aad. Si. 100 11980-85[5℄ Milo R et al 2002 Siene 298 824-27[6℄ Rao C V, Wolf D M and Arkin A P 2002 Nature 420 231-37[7℄ Thattai M and van Oudenaarden A 2001 Pro. Natl. Aad. Si. 98 8614-19[8℄ Swain P S, Elowitz M B and Siggia E D 2002 Pro. Natl. Aad. Si. 99 12795-800[9℄ Kepler T B and Elston T C 2001 Biophys. J. 81 3116-36[10℄ Bose I and Karmakar R 2004 in Biology of Geneti Dominane edited by Veitia R A(USA :Landes Biosiene), Chapter 6 16
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